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INTRODUCTION

Primary production in marine ecosystems largely depends 
on diatom photosynthesis, especially in temperate and arctic 
environments (Miettinen 2018, Gilbertson et al. 2022). There 
is accumulating evidence that oomycetes might be important 
players in regulating diatom blooms (Garvetto et al. 2018, 
Chambouvet et al. 2019), so for an in-depth understanding 
of diatom communities it is vital to elucidate the diversity 
and interactions of oomycetes with their diatom hosts 
(Scholz et al. 2016, Illicic & Grossart 2022). While previously 
almost all diatom parasitoids had been attributed to a single 
genus, Ectrogella (Dick 2001), recent research has shown 
that diatom parasitism has evolved multiple times and that 
species parasitising diatoms can be found throughout the 
oomycete tree of life (Buaya & Thines 2020c). So far, there is 
one confirmed diatom-infecting genus in Peronosporales, the 
genus Lagena (Thines & Buaya 2022), one diatom-infecting 
lineage in the Saprolegniales, the genus Aphanomycopsis 
(Buaya & Thines 2021a), and two diatom-infecting genera in 
the Leptomitales, namely Ectrogella (Buaya & Thines 2020b) 
and Lagenisma (Thines et al. 2015). However, the largest 
diversity of diatom parasitoids is apparently among the early-
diverging oomycete lineages, i.e. those that diverge before the 
split of the two “crown” groups, the Peronosporomycetes and 
the Saprolegniomycetes, which contain more than 95 % of the 
oomycete species described to date (Beakes & Thines 2017).

The first members of these early-diverging oomycete diatom 
parasites for which sequence data could be obtained were 
Miracula helgolandica (Hanic et al. 2009, Buaya et al. 2017), 
and Diatomophthora drebesii (Buaya et al. 2017, Buaya & Thines 
2020b). The latter species was initially described as a member 
of Olpidiopsis, a catch-all genus for holocarpic oomycetes (i.e. 
oomycetes that convert the entire cytoplasm into zoospores upon 
asexual sporulation) not producing morphologically divergent 
primary and secondary zoospores. This was because sequence 
data for the type species of Olpidiopsis, O. saprolegniae, a parasite 
of animal-parasitic oomycetes, was lacking. Once sequence 
data became available for O. saprolegniae, it was apparent 
that it was largely unrelated to the olpidiopsis-like oomycetes 
infecting diatoms. Thus, the formerly named Olpidiopsis drebesii 
became the type species of Diatomophthora, into which genus 
also Olpidiopsis gillii and Ectrogella perforans were transferred 
(Buaya et al. 2019a, c, 2020a).

In subsequent studies, additional species of Miracula were 
discovered, both in freshwater (Buaya et al. 2019d, Thines & 
Buaya 2022) and in marine (Buaya et al. 2021c) environments. In 
addition to these physically recovered species, the sequencing 
of uncultivated diatom parasites (Garvetto et al. 2019) as well as 
environmental sequencing (Hassett et al. 2019), have revealed 
the presence of several additional species-level clades in both 
Diatomophthora and Miracula.

Iceland has a rich diatom flora (Hansen 2006, Furey et al. 
2020) and is, thus, a promising region for the discovery of new 
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species, especially those that were previously found without 
preserved specimens in northern Europe (Garvetto et al. 2018) 
or the arctic ocean (Hassett et al. 2019). It was the aim of this 
study to search for diatom parasites previously known only from 
sequence data, focussing on members of the genus Miracula.

MATERIALS AND METHODS

Blávík research station

The Blávík research station is located in east Iceland, on 
Fáskrúðsfjörður, a fjord around 15 km long and 2 km wide at the 
location of the station. The station offers direct access to a beach 
with large pebbles, onto which detached algae strand during low 
tide, and rocks in the intertidal zone, overgrown with various 
brown and red algae. The macroalgae present are predominantly 
Fucus, Ectocarpus, Capsosiphon and Porphyra species. In the 
lower littoral and sublittoral, Laminaria species are dominant, 
especially L. digitata and L. hyperborea. In addition, a steep cliff 
allows direct access to deeper fjord waters for plankton net 
tows. The research infrastructure at the station features a Nikon 
Eclipse 1000T inverted compound light microscope, a dissecting 
microscope, and facilities for DNA extraction and PCR.

Host and pathogen samples

Host and pathogen samples were collected daily from the 26th 
of July to the 8th of August 2022 by plankton net tows from a 
cliff. The plankton net had a mesh size of 20 µm (Hydro-Bios, 
Kiel, Germany) and was towed vertically through the water-
column several times, from a depth of about 2.5 m to the 
surface. Plankton concentrates were poured into 500 mL 
plastic bottles and directly brought to the station for further 
examination. In the station, samples were poured onto 12-cm-
diam Petri dishes (Sarstedt, Nümbrecht, Germany) (except 
for the 8th of August) and investigated using a Nikon Eclipse 
1000T inverted microscope (Nikon, Japan). Thereby, threads 
of Fragilaria capucina s.l. infected with an oomycete parasite 
were found on the 1st up to 6th of August. Infected diatom 
threads were individually picked up for DNA extraction using a 
micropipette (10 µL, Brandt, Germany), and transferred through 
plain seawater until only infected filaments were seen. These 
filaments were collected in 2 mL vials for DNA extraction. DNA 
was extracted using an innuPREP plant DNA extraction kit from 
AnalytikJena (Analytik Jena, Jena, Germany) according to the 
instructions of the manufacturer. PCR for amplification was done 
as described previously (Buaya et al. 2017), and amplification 
products were visualised after agarose gel electrophoresis using 
a blue light transilluminator (TW26, VWR, Leuven, Belgium), 
and gel bands were visualised using the ROTI®GelStain (Carl Roth 
GmbH, Germany) with Safe Imager™ Blue-Light Transilluminator 
(Thermo Fisher, Germany) googles.

In addition, samples collected on the 8th of August were 
transferred directly into 50 mL tubes (Sarstedt, Nümbrecht, 
Germany) and transported to the Senckenberg Biodiversity and 
Climate Research centre at ambient temperature and poured 
into 12-cm-diam Petri dishes approximately 10 h after collection. 
These Petri dishes were then placed into a climate chamber set 
to continuously 10 °C and a 14 h light / 10 h dark cycle (CMP 
6010, Conviron, Canada). During the following days, additional 
infected filaments were collected. Also for these samples, PCR 

was done as described in Buaya et al. (2017). However, for 
cleaning infected filaments not plain but sterile seawater was 
used. After visually inspecting amplification products as outlined 
in Buaya et al. (2017), they were bidirectionally sequenced at 
the laboratory centre of the Biodiversity and Climate Research 
Centre. In addition, amplicons were cloned and sequenced as 
described previously (Buaya et al. 2019a). Consensus sequences 
were obtained by assembly and editing of the reads using 
Geneious v. 5.6 (Biomatters INC., New Zealand). Sequences of 
the parasitoid infecting Fragilaria capucina s.l. were deposited 
in GenBank (OP918674 for cox2, OP908040 for nrSSU).

As sequences were identical for all samples, only one 
representative sequence was added to the dataset of 
Thines & Buaya (2022). In addition, a sequence of Miracula 
einbuarlaekurica was included. Phylogenetic inference was 
done using the TrEase webserver (www.thines-lab.senckenberg.
de/trease) with default settings, for both Minimum Evolution 
and Bayesian inference. 

Morphological characterisation

Morphological characterisation was done using a Zeiss 
Imager M2 compound light microscope (Carl Zeiss, Göttingen, 
Germany), equipped with DIC. Measurements were done on 
calibrated images taken with a Zeiss Axiocam MRc5 camera 
using the software AxioVision (Carl Zeiss, Göttingen, Germany).

Establishment of dual cultures

Dual cultures were established in Petri dishes incubated as 
described above by first propagating clean host filaments in f/2 
(Sigma-Aldrich, UK) marine water enrichment medium (Guillard 
& Ryther 1962, Schnepf & Drebes 1977), which were obtained 
by serial transfer through sterile seawater. During this period 
of time, diatom growth in plankton samples was supported 
by adding f/2 medium, to ensure that host diatoms would not 
perish as previously described in Buaya et al. (2019b, 2020a). 
After clean host cultures were established, infected filaments 
with one pathogen thallus and cleaned as described above were 
added to healthy host samples. 

RESULTS

Establishment of dual cultures

In total, 10 strains of the pathogen were established, which 
were transferred to new hosts once per week. The strains were 
similar in virulence, and after three weeks, almost all host cells 
were parasitised and killed.

Life cycle observation and morphological characterisation

The life cycle of the pathogen started when a zoospore encysted 
at the girdle zone of the host (Fig. 1A) and developed a very 
thin infection tube that finally reached the host cytoplasm. The 
unwalled parasitoid moved towards the nucleus and enlarged, 
gradually degrading the host cytoplasm, until only bright orange 
to chestnut-coloured phaeoplast residues were visible at the poles 
of the host cell. Thalli usually one per cell, but occasionally, up to 
five thalli were observed in a single host cell. Thalli were usually 
broadly elongate, following the outline of the host cell when single, 
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or roundish when multiple infections were present and measured 
12–22 by 8–12 μm. While thalli matured, they developed a thin, 
colourless wall, and their cytoplasm became coarser. At this stage, 
the thalli did not grow further, but developed one to several 
short discharge tubes (5–9 μm long and 3–6 μm diam, Fig. 1B), 
which were slightly thickened at the base. Zoospores cleaved 
simultaneously in the periphery of a large central vacuole and 
assumed motility within the sporangium. After the tip of the 
discharge tube dissolved, zoospores 3–4 μm long and 2–3 μm 
broad escaped from the sporangium. Some of the zoospores 
encysted directly at the orifice of the discharge tube, leaving 
behind empty clusters of spores (Fig. 1C), while others swam in an 
irregular pattern in random directions before coming to rest. The 
germination of resting cysts was not observed, and no oospores 
or any other evidence of a sexual cycle were seen.

Phylogenetic reconstruction 

The phylogenetic reconstruction based on partial small 
ribosomal subunit (18S) sequences (Fig. 2) revealed a high level 
of sequence identity to a parasitoid from Fragilaria capucina s.l. 
and Licmophora sp. found by Garvetto et al. (2019), with which it 
was grouped together with maximum support in both analyses. 
While the crown oomycete group of Peronosporomycetes 
and Saprolegniomycetes and most genera of early-diverging 
oomycetes received high to maximum support in all analyses, 
higher-level relationships remained mostly unresolved. For the 
early-diverging genera support for the observed monophyly of 
Pontisma and Diatomophthora was low.

The phylogenetic reconstruction using partial cytochrome 
oxidase 2 (cox2) sequences (Fig. 3) revealed a topology congruent 
with the 18S-based reconstruction. However, the sequences of 
the parasitoid of Fragilaria capucina s.l. differed slightly from 
those reported earlier by Garvetto et al. (2019), with which they 
form a monophyletic group with maximum support in all analyses. 
Similar to the phylogenetic reconstruction based on partial 18S 
sequences, most higher-level relationships could not be resolved.

Taxonomy

Based on the host parasitised and the large genetic distance to 
other species of Miracula, the parasitoid of Fragilaria capucina 
s.l. is herewith introduced as a new species of the genus.

Miracula blauvikensis Buaya & Thines, sp. nov. MycoBank MB 
846741. Fig. 1A–C.

Etymology: Named after the locality in Iceland, Blávík, from 
where the type specimen was isolated.

Typus: Iceland, Fáskúðsfjörður, Blávík, 6 Aug. 2022, coll. A. Buaya, isol. 
22 Aug. 2022 (holotype Herb. Senckenbergianum (FR), FR-0046158), ex-
type sequences deposited in GenBank (OP918674 for cox2, OP908040 
for nrSSU).

Diagnosis: Differs from all know species of Miracula by 
parasitising the diatom genus Fragilaria.

Description: Thallus endobiotic in diatoms of the genus 
Fragilaria, 12–22 μm long, 8–12 μm broad, usually one per 
host cell, sometimes up to five. Thallus naked at first, later 
thin-walled, producing one to usually two to three, sometimes 

up to five discharge tubes. Zoospores usually 4 μm long and 3 
μm broad, starting to move inside the sporangial thallus, and 
either encysting directly at the orifice of the discharge tube, 
or swimming in the surrounding media for some time before 
coming to rest. Resting cyst germination and sexual reproduction 
not observed.

Habitat: Marine, living cells of Fragilaria species.

Known distribution: Iceland.

DISCUSSION

Oomycetes that act as parasitoids of diatoms can have major 
impacts, especially on marine ecosystems (Scholz et al. 2016, 
Klawonn et al. 2021), as they can lead to the decline of diatom 
blooms, which form an important component of the base 
of the pelagic food web. Considering this, research into the 
diversity, ecology, physiology, and host-parasitoid interaction 
of these organisms seems highly warranted (Scholz et al. 2016, 
Chambouvet et al. 2019, Buaya & Thines 2020c). However, 

A B

C

Fig. 1. DIC micrographs of various infection stages. A. Various infection 
stages of Miracula blauvikensis in a filament of Fragillaria capucina s.l., 
the red arrowhead pointing to a thallus in an early stage, closely attached 
to the host nucleus. B. Discharge tubes of Miracula blauvikensis (near 
the tip of the red arrowheads). C. Empty thalli after spore discharge, the 
red arrowheads pointing to empty cysts near the orifices of discharge 
tubes. Scale bar = 25 μm.
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Fig. 2. Phylogenetic reconstruction in Minimum Evolution on the basis of partial nrSSU sequences. The first and the second number on the branches 
denote bootstrap support equal or greater to 60 % in Minimum Evolution and Maximum Likelihood, respectively. The third number refers to posterior 
probabilities equal to or greater than 0.95 from the Bayesian phylogenetic inference. A minus sign denotes lack of support for the presented or an 
alternate topology. A blue arrowhead denotes the position of the novel species.
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Fig. 3. Phylogenetic reconstruction in Minimum Evolution on the basis of partial cox2 sequences. The first and the second number on the branches 
denote bootstrap support equal or greater to 60 % in Minimum Evolution and Maximum Likelihood, respectively. The third number refers to posterior 
probabilities equal to or greater than 0.95 from the Bayesian phylogenetic inference. A minus sign denotes lack of support for the presented or an 
alternate topology.
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there are only few studies that have evaluated the host range 
of oomycetes infecting algae (Müller et al. 1999, Gachon et al. 
2009, Strittmatter et al. 2009) or diatoms (Drebes 1966, Buaya 
et al. 2019b, 2020a), or that have started to investigate the 
molecular and chemical interaction of holocarpic oomycetes and 
their hosts (Beakes & Glocking 1998, Gachon et al. 2009, Beakes 
et al. 2012, Vallet et al. 2019, Murúa et al. 2020). Apart from this, 
the biodiversity of holocarpic oomycetes remains obscure on all 
levels, despite some recent progress (Buaya et al. 2017, Garvetto 
et al. 2018, Buaya & Thines 2020c). Recent studies focussing on 
environmental sequencing have revealed a tremendous diversity 
of oomycete lineages in the marine realm (Garvetto et al. 2018, 
Chambouvet et al. 2019, Hassett et al. 2019), which is contrasted 
by the relatively few species described so far. The species 
described in this study, Miracula blauvikensis, or a closely related 
species, has been observed both by environmental sequencing 
(Hassett et al. 2019), and single cell sequencing (Garvetto et al. 
2019). This suggests that the species, similar to M. helgolandica, 
is widespread throughout the northern hemisphere.

The host-parasite co-culture reported in this study represents 
the fourth oomycete genus parasitising marine diatoms 
that could be brought into co-cultivation with its host, after 
Lagenisma (Buaya et al. 2019b), Diatomophthora (Buaya et al. 
2020a), Miracula (Buaya & Thines 2021b), and Lagena (Thines 
& Buaya 2022). However, it is the first oomycete-diatom system 
featuring a diatom host with relatively small cells. As host cell 
volume and genome size are strongly correlated in diatoms 
(Vardi et al. 2009, Nakayama 2022), this system could thus be 
useful for investigating the genetic basis of diatom-oomycete 
interaction. For this, host and parasite strains are freely available 
from the authors upon request. We hope that this resource will 
help to shed light on the poorly understood parasitic interactions 
that form an important cornerstone of the global food web.
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